Initialization Free Graph Based Clustering
نویسندگان
چکیده
This paper proposes an original approach to cluster multi-component data sets, including an estimation of the number of clusters. From the construction of a minimal spanning tree with Prim’s algorithm, and the assumption that the vertices are approximately distributed according to a Poisson distribution, the number of clusters is estimated by thresholding the Prim’s trajectory. The corresponding cluster centroids are then computed in order to initialize the generalized Lloyd’s algorithm, also known as K-means, which allows to circumvent initialization problems. Some results are derived for evaluating the false positive rate of our cluster detection algorithm, with the help of approximations relevant in Euclidean spaces. Metrics used for measuring similarity between multi-dimensional data points are based on symmetrical divergences. The use of these informational divergences together with the proposed method leads to better results, compared to other clustering methods for the problem of astrophysical data processing. Some applications of this method in the multi/hyper-spectral imagery domain to a satellite view of Paris and to an image of the Mars planet are also presented. In order to demonstrate the usefulness of divergences in our problem, the method with informational divergence as similarity measure is compared with the same method using classical metrics. In the astrophysics application, we also compare the method with the spectral clustering algorithms.
منابع مشابه
Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملA Comparison of Two Novel Algorithms for Clustering Web Documents
In this paper we investigate the clustering of web document collections using two variants of the popular kmeans clustering algorithm. The first variant is the global k-means method, which computes “good” initial cluster centers deterministically rather than relying on random initialization. The second variant allows for the use of graphs as fundamental representations of data items instead of ...
متن کاملImproved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملBeyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts
Spectral clustering is based on the spectral relaxation of the normalized/ratio graph cut criterion. While the spectral relaxation is known to be loose, it has been shown recently that a non-linear eigenproblem yields a tight relaxation of the Cheeger cut. In this paper, we extend this result considerably by providing a characterization of all balanced graph cuts which allow for a tight relaxat...
متن کاملEnsemble clustering using factor graph
In this paper, we propose a new ensemble clustering approach termed ensemble clustering using factor graph (ECFG). Compared to the existing approaches, our approach has three main advantages: (1) the cluster number is obtained automatically and need not to be specified in advance; (2) the reliability of each base clustering can be estimated in an unsupervised manner and exploited in the consens...
متن کامل